165 research outputs found

    Entanglement entropy and the determination of an unknown quantum state

    Full text link
    An initial unknown quantum state can be determined with a single measurement apparatus by letting it interact with an auxiliary, "Ancilla", system as proposed by Allahverdyan, Balian and Nieuwenhuizen [Phys. Rev. Lett. 92, 120402 (2004)]. In the case of two qubits, this procedure allows to reconstruct the initial state of the qubit of interest S by measuring three commuting observables and therefore by means of a single apparatus, for the total system S + A at a later time. The determinant of the matrix of the linear transformation connecting the measurements of three commuting observables at time t > 0 to the components of the polarization vector of S at time t = 0 is used as an indicator of the reconstructability of the initial state of the system S. We show that a connection between the entanglement entropy of the total system S + A and such a determinant exists, and that for a pure state a vanishing entanglement individuates, without a need for any measurement, those intervals of time for which the reconstruction procedure is least efficient. This property remains valid for a generic dimension of S. In the case of a mixed state this connection is lost.Comment: 5 pages 2 figures, accepted for publication on Physical Review

    Linear Response and Fluctuation Dissipation Theorem for non-Poissonian Renewal Processes

    Full text link
    The Continuous Time Random Walk (CTRW) formalism is used to model the non-Poisson relaxation of a system response to perturbation. Two mechanisms to perturb the system are analyzed: a first in which the perturbation, seen as a potential gradient, simply introduces a bias in the hopping probability of the walker from on site to the other but leaves unchanged the occurrence times of the attempted jumps ("events") and a second in which the occurrence times of the events are perturbed. The system response is calculated analytically in both cases in a non-ergodic condition, i.e. for a diverging first moment in time. Two different Fluctuation-Dissipation Theorems (FDTs), one for each kind of mechanism, are derived and discussed

    Bimodality in gene expression without feedback: From Gaussian white noise to log-normal coloured noise

    Full text link
    Extrinsic noise-induced transitions to bimodal dynamics have been largely investigated in a variety of chemical, physical, and biological systems. In the standard approach in physical and chemical systems, the key properties that make these systems mathematically tractable are that the noise appears linearly in the dynamical equations, and it is assumed Gaussian and white. In biology, the Gaussian approximation has been successful in specific systems, but the relevant noise being usually non-Gaussian, non-white, and nonlinear poses serious limitations to its general applicability. Here we revisit the fundamental features of linear Gaussian noise, pinpoint its limitations, and review recent new approaches based on nonlinear bounded noises, which highlight novel mechanisms to account for transitions to bimodal behaviour. We do this by considering a simple but fundamental gene expression model, the repressed gene, which is characterized by linear and nonlinear dependencies on external parameters. We then review a general methodology introduced recently, so-called nonlinear noise filtering, which allows the investigation of linear, nonlinear, Gaussian and non-Gaussian noises. We also present a derivation of it, which highlights its dynamical origin. Testing the methodology on the repressed gene confirms that the emergence of noise-induced transitions appears to be strongly dependent on the type of noise adopted, and on the degree of nonlinearity present in the system.Comment: Review paper, 17 pages, 8 figure

    Deforestation and world population sustainability: a quantitative analysis

    Get PDF
    In this paper we afford a quantitative analysis of the sustainability of current world population growth in relation to the parallel deforestation process adopting a statistical point of view. We consider a simplified model based on a stochastic growth process driven by a continuous time random walk, which depicts the technological evolution of human kind, in conjunction with a deterministic generalised logistic model for humans-forest interaction and we evaluate the probability of avoiding the self-destruction of our civilisation. Based on the current resource consumption rates and best estimate of technological rate growth our study shows that we have very low probability, less than 10% in most optimistic estimate, to survive without facing a catastrophic collapse

    Breakdown of the Onsager principle as a sign of aging

    Full text link
    We discuss the problem of the equivalence between Continuous Time Random Walk (CTRW) and Generalized Master Equation (GME). The walker, making instantaneous jumps from one site of the lattice to another, resides in each site for extended times. The sojourn times have a distribution psi(t) that is assumed to be an inverse power law. We assume that the Onsager principle is fulfilled, and we use this assumption to establish a complete equivalence between GME and the Montroll-Weiss CTRW. We prove that this equivalence is confined to the case when psi(t) is an exponential. We argue that is so because the Montroll-Weiss CTRW, as recently proved by Barkai [E. Barkai, Phys. Rev. Lett. 90, 104101 (2003)], is non-stationary, thereby implying aging, while the Onsager principle, is valid only in the case of fully aged systems. We consider the case of a dichotomous fluctuation, and we prove that the Onsager principle is fulfilled for any form of regression to equilibrium provided that the stationary condition holds true. We set the stationary condition on both the CTRW and the GME, thereby creating a condition of total equivalence, regardless the nature of the waiting time distribution. As a consequence of this procedure we create a GME that it is a "bona fide" master equation, in spite of being non-Markovian. We note that the memory kernel of the GME affords information on the interaction between system of interest and its bath. The Poisson case yields a bath with infinitely fast fluctuations. We argue that departing from the Poisson form has the effect of creating a condition of infinite memory and that these results might be useful to shed light into the problem of how to unravel non-Markovian master equations.Comment: one file .tex, revtex4 style, 11 page

    Memory Effects in the Standard Model for Glasses

    Get PDF
    The standard model of glasses is an ensemble of two-level systems interacting with a thermal bath. The general origin of memory effects in this model is a quasi-stationary but non-equilibrium state of a single two-level system, which is realized due to a finite-rate cooling and very slow thermally activated relaxation. We show that single particle memory effects, such as negativity of the specific heat under reheating, vanish for a sufficiently disordered ensemble. In contrast, a disordered ensemble displays a collective memory effect [similar to that described by Kovacs for glassy polymers], where non-equilibrium features of the ensemble are monitored via a macroscopic observable. An experimental realization of the effect can be used to further assess the consistency of the model.Comment: 4 pages, 6 figure

    Absorption and Emission in the non-Poisson case

    Full text link
    This letter adresses the challenging problems posed to the Kubo-Anderson (KA) theory by the discovery of intermittent resonant fluorescence with a non-exponential distribution of waiting times. We show how to extend the KA theory from aged to aging systems, aging for a very extended time period or even forever, being a crucial consequence of non-Poisson statistics.Comment: 4 pages 3 figures. accepted for publication on Physical Review Letter

    Effect of Ergodic and Non-Ergodic Fluctuations on a Charge Diffusing in a Stochastic Magnetic Field

    Get PDF
    In this paper, we study the basic problem of a charged particle in a stochastic magnetic field. We consider dichotomous fluctuations of the magnetic field where the sojourn time in one of the two states are distributed according to a given waiting-time distribution either with Poisson or non-Poisson statistics, including as well the case of distributions with diverging mean time between changes of the field, corresponding to an ergodicity breaking condition. We provide analytical and numerical results for all cases evaluating the average and the second moment of the position and velocity of the particle. We show that the field fluctuations induce diffusion of the charge with either normal or anomalous properties, depending on the statistics of the fluctuations, with distinct regimes from those observed, e.g., in standard Continuous-Time Random Walk models
    • …
    corecore